

INSTALLING, OPERATING, AND MAINTAINING

MODEL D1000

SINGLE PHASE TRIGGER

REVISED: FEBRUARY 2008

INSTRUCTION MANUAL #910-5252-021

THE MODEL D1000 SINGLE PHASE TRIGGER

DESCRIPTION:

The D1000 is a digital trigger and power controller developed for single phase applications. The digital firing circuits eliminate many of the problems commonly found with analog controls – susceptibility to line distortions, control circuitry noise and drift. The D1000 can be used as a trigger board or a complete power controller with current output capabilities of 30 Amps as standard.

FEATURES:

- Digital Firing
- Current Limiting and Over current Trip Detection
- Open Loop (no external feedback) or Closed Loop Operation
- Regulation of 1% or better
- Fast Response 16 milliseconds, Open loop
- On/Off Control Switch
- User Trip Input allows an external source to shut down the control.

OPTIONS:

- 4 to 20 milliamp Current Input Control with Gain and Bias Adjustment
- RMS Feedback
- Lower or Higher Output Current Ratings Available

SPECIFICATIONS:

- CONTROL VOLTAGE:
- INPUT VOLTAGE:
- OUTPUT VOLTAGE:
- CURRENT RATING:
- CURRENT LIMIT:
- OVERCURRENT TRIP:

110 OR 220 Volts AC Single Phase

zero to 10 Volts DC, four to 20 ma optional

zero to 110/220 Volts AC

- 30 Amperes Continuous, 90 Amps peak
- User adjustable from 50 to 100%
- User adjustable from 125 to 250%

DIMENSIONS:

- LENGTH: 10.50 inches
- WIDTH: 7.00 inches
- HEIGHT: 4.25 inches

TABLE OF CONTENTS

SECTION 1:	General Information	Page		
1.1 1.2 1.3 1.4 1.5	Warranty	1 1 1 2		
SECTION 2: General Description				
2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.4 2.2.5 2.2.6 2.2.7	Input	3 3 3 3 3 3 3 3 3 3 4 4		
SECTION 3: Installation and Start-Up				
3.1 3.2 3.2.1 3.2.2 3.2.3	Introduction Hook Up Notes Input Line and Output Voltage Input Reference Signal A Manual Input Reference B Current Input Option Feedback A Open Loop B Standard DC Feedback	5 5 5 6 8 11		
3.2.4 3.2.5	C AC RMS Feedback Option Current Limit Point Over Current Trip Point	13 15 15		

LIST OF FIGURES D1000 HOOK-UP NOTES

Figure	Title	<u>Page</u>
Fig. 1	Manual Input Ref., Open Loop	7
Fig. 2	Current Input Option	9
Fig. 3	Current Ref. Input, Open Loop	10
Fig. 4	Manual Input Ref., Closed Loop DC Feedback	12
Fig. 5	Manual Input Ref., Closed Loop RMS Feedback	14

SECTION 1 GENERAL INFORMATION

1.1 Introduction:

This manual provides the necessary information to install and operate the **Model 1000 Single Phase Trigger**. It should be read and understood completely before trying to work with the Model D1000. Please feel free to call IPC Automation with any questions you may have **BEFORE** performing installation or start-up.

1.2 <u>Safety</u>:

There are certain fundamental warnings which must be kept in mind at all times. These include:

WARNING:

THE D1000 SINGLE PHASE TRIGGER SHOULD BE INSTALLED, ADJUSTED, AND SERVICED BY QUALIFIED ELECTRICAL MAINTENANCE PERSONNEL FAMILIAR WITH THE CONSTRUCTION AND OPERATION OF ALL EQUIPMENT IN THE SYSTEM: PERSONAL INJURY AND/OR EQUIPMENT DAMAGE MAY OCCUR IF INDIVIDUALS ARE NOT FAMILIAR WITH THE HAZARDS RESULTING FROM IMPROPER OPERATION.

WARNING:

THE USER IS RESPONSIBLE FOR CONFORMING WITH THE NATIONAL ELECTRICAL CODE WITH RESPECT TO MOTOR, CONTROLLER, AND OPERATOR DEVICE INSTALLATION, WIRING AND START-UP. THE USER IS ALSO RESPONSIBLE FOR UNDERSTANDING AND APPLYING ALL OTHER APPLICABLE LOCAL CODES WHICH GOVERN SUCH PRACTICES AS WIRING PROTECTION, GROUNDING, DISCONNECTS, AND OVERCURRENT PROTECTION.

1.3 <u>Warranty</u>:

Standard conditions of sale for the Company include a Statement of Warranty which covers the control equipment. This Statement of Warranty covers all new equipment.

1.4 Q.A. Testing:

Each unit is carefully tested at the factory prior to shipment. The control must pass both Static and Dynamic performance checks as well as Final Inspection for quality of workmanship. A unit is allowed to ship only after acceptance of all aspects of Q.A. Testing and Inspection.

1.5 <u>Storage</u>:

If it should become necessary to store the control for any length of time, the following precautions should be taken:

- Store the control in a clean, dry (non-corrosive location that is protected from sudden temperature changes, high levels of moisture, shock, and vibration.
- Ambient temperature should be maintained between 0 degrees C and 65 degrees C.
- The control should be covered to protect from dust and dirt contamination. (Utilize original shipment packaging if available).

SECTION 2 GENERAL DESCRIPTION

2.1 <u>Introduction</u>:

The IPC Automation Model D1000 Single Phase Trigger uses a combination of analog and digital circuitry to provide a simple yet reliable source of power. The trigger is designed to hard fire a back-to-back SCR configuration producing a variable AC output voltage source.

- 2.2 <u>Control Specification</u>:
- 2.2.1 Input: 120/240 VAC Single Phase
- 2.2.2 <u>Output</u>: 0 to 120/240 VAC Single Phase 30 Amp continuous 90 Amp peak
- 2.2.3 <u>Control Reference Input</u>:
 - A. MANUAL INPUT REFERENCE -- An external resistor and potentiometer provides 0 to 10 volts referenced from the internal power supply; or
 - B. CURRENT INPUT -- Optional current input 0 to 20 MA with gain and bias adjustments located on the C1001 option board.
- 2.2.4 <u>Feedback</u>:
 - A. OPEN LOOP -- The control can be operated open loop by installing a jumper on the trigger control board; or
 - B. DC FEEDBACK Provides closed loop control and accuracy of the output voltage with adjustable gain. This signal should be a maximum 10 VDC; or
 - C. AC RMS FEEDBACK Also provides closed loop control and accuracy of the output voltage with adjustable gain. This signal should be a maximum 12 VAC.

2.2.5 <u>Current Limiting</u>:

This point is adjustable by the use of an external resistor.

2.2.6 <u>Over Current Trip</u>:

Disable the output firing for overload conditions. The trip point is set between 100% and 200% by the OCT potentiometer and an LED indicator is provided for trip indication.

2.2.7 <u>General Specifications</u>:

- Fully isolated;
- Linear firing of output SCR's with relationship to the applied input command;
- Digital firing logic to provide full 180 degree firing range of the output SCR's;
- Picket fence hard-firing of output SCR's.

SECTION 3 INSTALLATION AND START UP

3.1 Introduction:

The following section contains hook-up notes and drawings for the D1000 Single Phase Trigger and C1001 option board.

WARNING:

THE D1000 SINGLE PHASE TRIGGER SHOULD BE INSTALLED, ADJUSTED, AND SERVICED BY QUALIFIED ELECTRICAL MAINTENANCE PERSONNEL FAMILIAR WITH THE CONSTRUCTION AND OPERATION OF ALL EQUIPMENT IN THE SYSTEM: PERSONAL INJURY AND/OR EQUIPMENT DAMAGE MAY OCCUR IF INDIVIDUALS ARE NOT FAMILIAR WITH THE HAZARDS RESULTING FROM IMPROPER OPERATION.

WARNING:

THE USER IS RESPONSIBLE FOR CONFORMING WITH THE NATIONAL ELECTRICAL CODE WITH RESPECT TO MOTOR, CONTROLLER, AND OPERATOR DEVICE INSTALLATION, WIRING, AND START-UP. THE USER IS ALSO RESPONSIBLE FOR UNDERSTANDING AND APPLYING ALL OTHER APPLICABLE LOCAL CODES WHICH GOVERN SUCH PRACTICES AS WIRING PROTECTION, GROUNDING, DISCONNECTS, AND OVERCURRENT PROTECTION.

- 3.2 <u>Hook-Up Notes:</u>
- 3.2.1 Input Line and Output Voltage:
 - A. L1 and L2 are the input lines to the power section 120/240 VAC;
 - B. L1F and L2F should be fused input lines to protect the control board (see Figure 1);
 - C. The AC output is 0 to 120/240 VAC single phase, 30 amp continuous, 90 amp peak.

3.2.2 Input Reference Signal:

The Input Reference signal can either be:

- A. Manual Input Reference; or
- B. Current Input Option

Each are described as follows:

A. MANUAL INPUT REFERENCE: (Reference Figure #1):

- 1. Attach the "ON/OFF" switch to TB1 terminal 1 and TB1 terminal 2 (see Figure #1)
- 2. Attach a 5K OHM resistor in series with the low end of a 10K OIHM potentiometer and connect as follows:

TB1 Terminal	<u>Connect</u>
1 4	Other End 5K resistor Potentiometer wiper
5	High end of potentiometer

- 3. Monitor the voltage at TB1 terminal 4 with a voltmeter referenced to common (TB1-5 or TB1-7);
- 4. With power applied and the on switch closed; check that the range of the potentiometer is from 0-10 VDC at TB1-4.

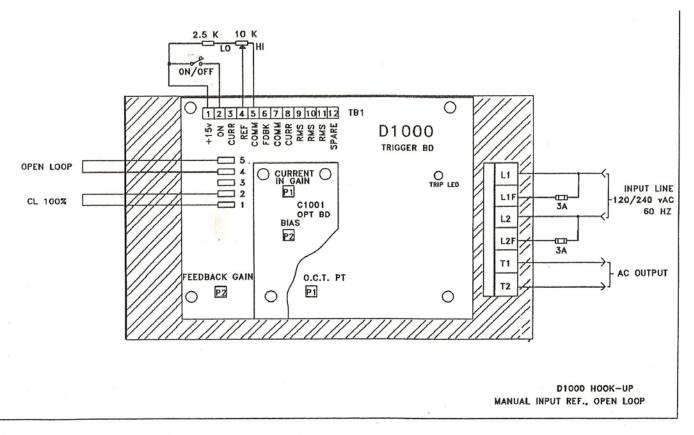
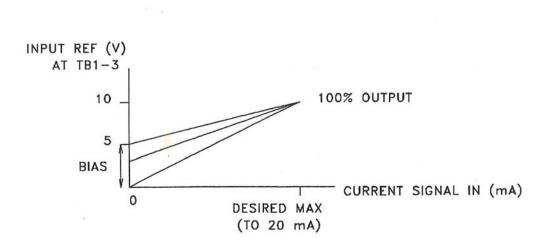


FIG. 1

B. **CURRENT INPUT OPTION (Reference Figures 2, 2.1, and 3)**

 $\underline{\text{STANDARD}} = 0 - 20 \text{ MA}$

<u>OFFSET MODIFICATION</u> = 4 - 20 MA operation when 750k ohm resistor is present on the bottom of the C1001 Option Board.


- 1. Attach "ON OFF/RESET" switch as seen in Figure 3 to TB1 terminal 2;
- 2. When using the current input option the external reference potentiometer **WILL NOT** be used;
- 3. Turn the bias potentiometer (P2 on the C1001 option board) fully counter-clockwise;
- 4. Apply maximum current input to TB1 terminal 8;

DALE

- 5. Monitor the voltage at TB1 terminal 3 with a voltmeter;
- 6. Adjust the input gain potentiometer (P1 on the C1001 option board) for +10V at TB1 terminal 3. This will set the maximum input reference to the control, given the maximum input current;
- 7. When this point is set at +10V, place a jumper across TB1 terminal 3 and TB1 terminal 4. This will connect the reference signal to the control board. This jumper should be installed **after** the maximum reference point is set;
- The Bias potentiometer (P2 on the C1001 option Board) can now be adjusted. Continue to monitor the voltage at TB1 Terminal 3 with a voltmeter. With an input signal of 0 MA (4 MA for offset modification) at TB1 terminal 8, adjust the bias for the desired output level (see figure 2, 2.1);
- 9. The range of the bias potentiometer is as follows:

P2 on option board – Full clockwise = 5V P2 on option board – Full counter-clockwise = 0V

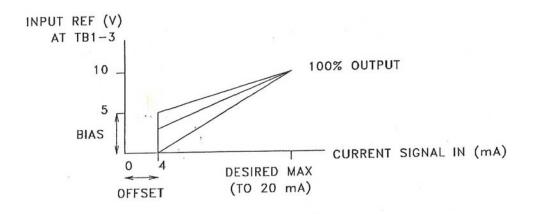
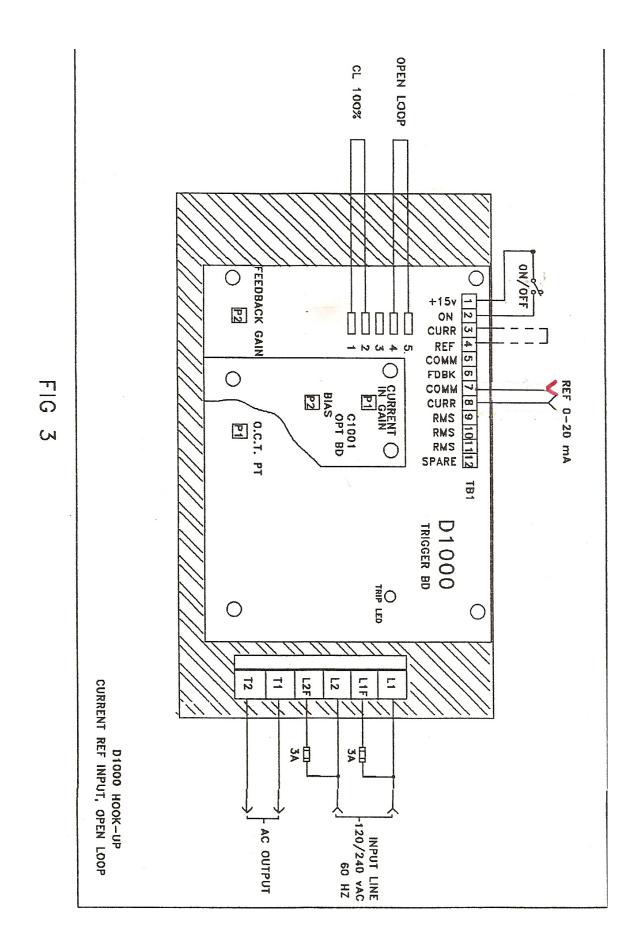

CURRENT INPUT OPTION

FIG. 2


CURRENT INPUT OPTION

WITH 4 - 20 mA OFFSET MODIFICATION

NOTE: A 750 K OHM RESISTOR ADDED TO THE BOTTOM OF THE C1001 BD INDICATES A 4 mA OFFSET MODIFICATION

FIG. 2.1

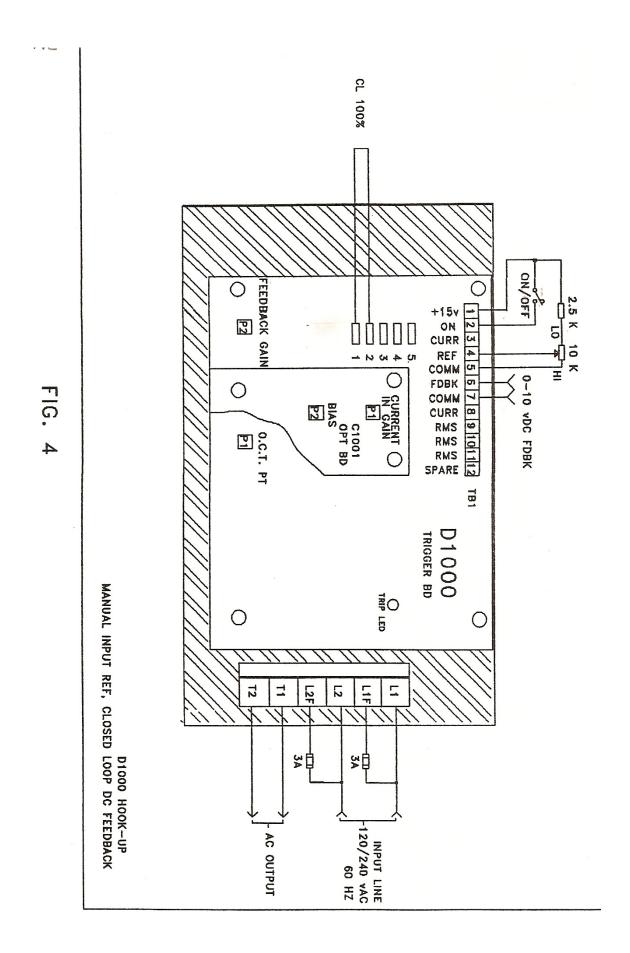
3.2.3 <u>Feedback</u>:

The Feedback signal can be either:

- A. Open Loop; or
- B. Closed Loop DC; or
- C. Closed Loop AC RMS.

Each are described as follows:

A. **OPEN LOOP (Reference Figure #1)**


- 1. Place a jumper between quick disconnect terminal stubs #4 and #5 (see Figure 1 or 3) to establish open loop operation;
- 2. In the open loop mode, the control will regulate on the reference signal only. There should be no signal applied at the feedback point TB1 Terminal 6.

B. STANDARD DC FEEDBACK (Reference figure #4)

- 1. Apply full feedback voltage 1 VDC to 10VDC at TB1 Terminal 6 (see Figure 4);
- Monitor quick disconnect terminal stub #3 referenced to common (TB1-5 or TB1-7);
- Apply power, close the "ON/OFF" switch, apply full reference signal (TB1-4 = +10 VDC) and adjust the "Feedback Gain" potentiometer P2 on the D1000 Trigger board for -10 VDC at quick disconnect terminal stub #3;

WARNING: THE FEEDBACK SIGNAL AT QUICK DISCONNECT TERMINAL STUB #3 SHOULD BE AS CLOSE AS POSSIBLE TO -10 VDC WITHOUT EXCEEDING IT WHEN THE FULL ON REFERENCE SIGNAL IS +10 VDC AT TB1-4.

4. The DC feedback signal is typically high impedance (Z = 10K ohms).

C. RMS FEEDBACK (Reference Figure 5)

- 1. Connect a jumper from TB1 Terminal 9 to TB1 Terminal 6 to establish AC RMS feedback operation (see Figure 5);
- 2. Apply a feedback signal no greater than 12 VAC to TB1 Terminal 10 and TB1 Terminal 11.
- 3. Monitor quick disconnect terminal stub #3 referenced to common (TB1-5 or TB1-7);
- Apply power, close the "ON/OFF" switch, apply full reference signal (TB1-4 = +10 VDC) and adjust the "Feedback Gain" potentiometer P2 on the D1000 Trigger board for -10 VDC at quick disconnect terminal stub #3;

WARNING: THE FEEDBACK SIGNAL AT QUICK DISCONNECT TERMINAL STUB #3 SHOULD BE AS CLOSE AS POSSIBLE TO -10VDC WITHOUT EXCEEDING IT WHEN THE FULL ON REFERENCE SIGNAL IS +10 VDC AT TB1-4.

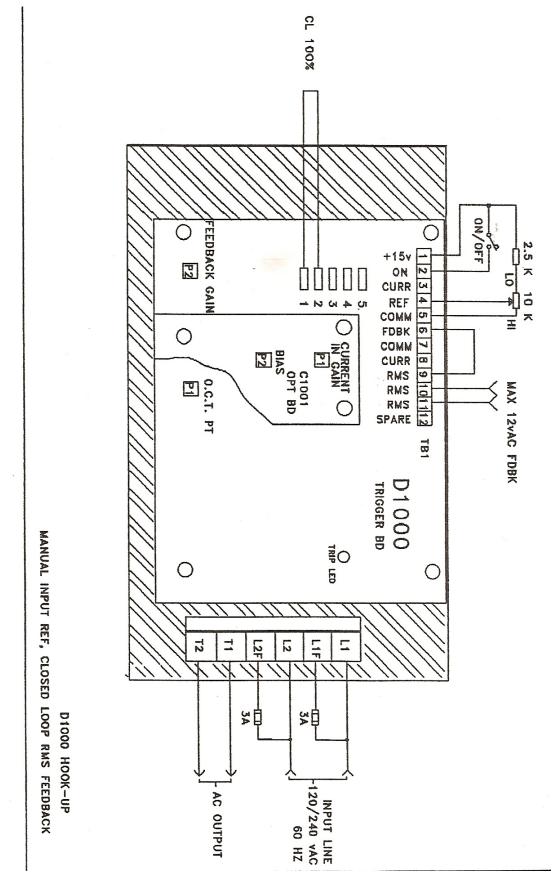


FIG. 5

3.2.4 <u>Current Limit Point</u>:

- A. The current limit point is set by placing a resistance between quick disconnect terminals #1 and #2 (see Figure #1);
- B. The following chart should be used to set the current limit point:

Resistor	Current Limit Point
0K ohms	100%
20K ohms	75%
40K ohms	50%

3.2.5 <u>Over-Current Trip Point</u>:

- A. Potentiometer P1 on the D1000 Trigger board adjusts the point which the control will over current trip;
- B. A red LED on the right side of the Trigger board indicates a trip when illuminated;
- C. The range of the over current trip potentiometer is as follows:

P1 on Trigger board -- Full Clockwise = 250% of full load

P1 on Trigger board – Full Counter-clockwise = 125% of full load